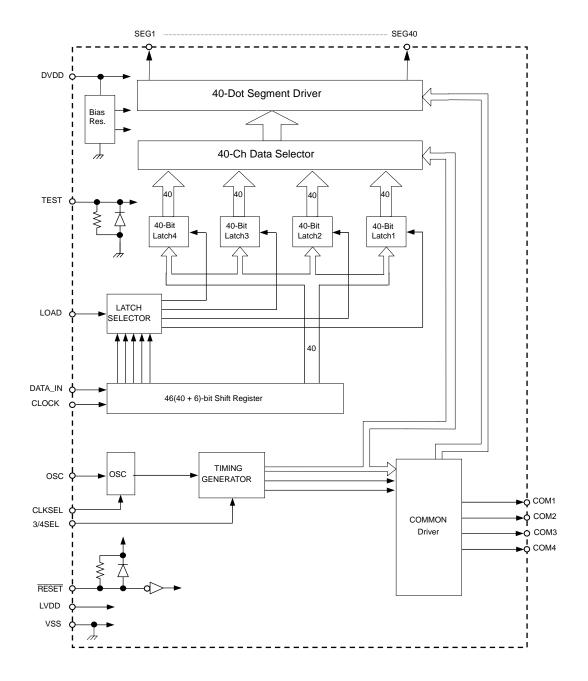


1/3 or 1/4 Duty, 40-Output LCD Driver

GENERAL DESCRIPTION

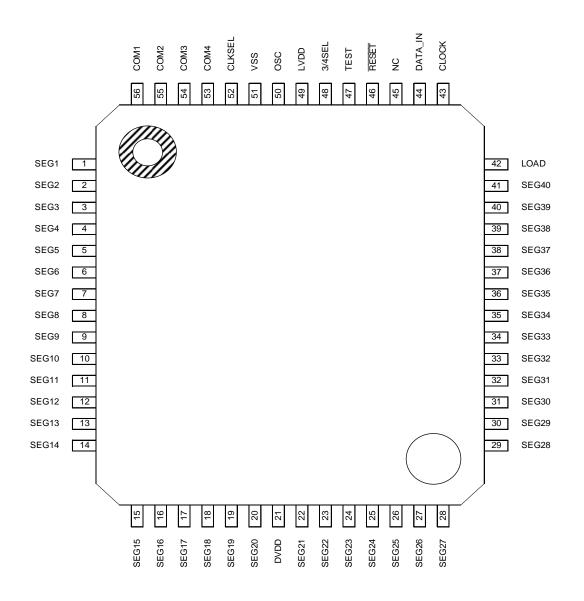
The ML9475 is an LCD driver for dynamic display. It has a function to switch between 1/3 and 1/4 duty. When 1/4 duty is selected, an LCD of up to 160 segments can be driven directly; when 1/3 duty is selected, an LCD of up to 120 segments can be driven directly.


FEATURES

- Logic power supply voltage : 2.7 to 3.6 V, 4.5 to 5.5 V
- Driver power supply voltage : 3.5 to 5.5 V
- Operating temperature
- 40 segment outputs 1/4 duty 1/3 duty
- : Up to 160 segments can be displayed.
- : Up to 120 segments can be displayed.
- Serially interfaces with the CPU using the three signal lines of LOAD, DATA_IN, and CLOCK

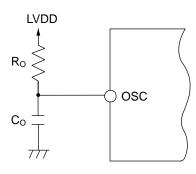
: -40 to +105°C

- Built-in RC oscillator circuit for LCD AC drive (the CLKSEL pin allows selecting an external clock input)
- Built-in voltage-dividing resistor for bias voltage generation
- Package : 56-pin plastic QFP (QFP56-P-910-0.65-2K)

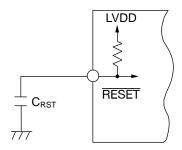

BLOCK DIAGRAM

FEDL9475-01

PIN CONFIGURATION (TOP VIEW)



56-Pin Plastic QFP


PIN DESCRIPTION

Symbol	I/O	Description
		Pin for oscillation. Has a Schmitt circuit built in.
		An oscillator circuit can be configured by connecting one external resistor and one
		external capacitor.
OSC	I/O	Since an oscillator circuit is susceptible to external noise, make the wiring
000	1/0	between this pin and external components as short as possible. An external clock
		input can be selected by CLKSEL.
		The relationship between oscillation frequency f_{OSC} and frame frequency f_{FRM} is:
		$f_{FRM} = f_{OSC}/24^{(*1)}$
		Serial data input pin. Has a Schmitt circuit built in.
DATA_IN	I	The LCD display is turned on when the input data signal is at a "H" level and
		turned off when the input data signal is at a "L" level.
		Shift clock input pin. Has a Schmitt circuit built in.
CLOCK	I	Data to the DATA_IN pin is shifted in sync with the rising edges of the shift clock
		pulses.
LOAD	1	Load pulse input pin. Has a Schmitt circuit built in.
	•	Used to transfer serially input data to the display latch or write commands.
TEST	1	IC test pin. Has a pull-down resistor built in.
	•	Leave this pin open or connect it to VSS when not used.
	I	OSC pin input switching pin.
CLKSEL		When using the built-in oscillator circuit, set this pin to a "L" level; when inputting
OLIVOLL		an external clock, set this pin to a "H" level. While this pin is at a "H" level, the
		oscillator circuit connected is disabled.
3/4SEL	1	1/3- or 1/4-duty switching input pin. When "H" level is input, 1/3 duty is selected
	•	and when "L" level is input, 1/4 duty is selected.
		Reset signal input pin for initializing the IC. Has a Schmitt circuit built in.
RESET	1	This pin is enabled by setting it to "L" level. This pin has a built-in pull-up resistor.
HEOLI		Normally, this pin, when connected with an external capacitor, performs power-on
		reset. ^(*2)
		Output pins for LCD display. Connect to the common pins of the LCD panel.
COM1		- When 1/3 duty is selected:
COM2		Common signals are outputted through the COM1, COM2, and COM3 pins.
COM3	0	Leave the COM4 pin open.
COM4		- When 1/4 duty is selected:
00111		Common signals are outputted through the COM1, COM2, COM3, and COM4
		pins.
	_	Output pins for LCD display. Connect to the segment pins of the LCD panel.
SEG1 to SEG40	0	For the relationship between each output of these pins and data, see the section
		on "Data Structure."
LVDD	-	Logic power supply pin.
DVDD	-	LCD driver power supply pin.
VSS	-	Ground pin.

*1: Oscillator circuit configuration

*2: Reset circuit configuration

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Condition	Rating	Unit
Power supply voltage	LVDD, DVDD	Ta = 25°C	-0.3 to +6.5	V
Input voltage	VI	Ta = 25°C	-0.3 to LVDD+0.3	V
Power dissipation	PD	Ta ≤ 105°C	350	mW
Output current	lo	Ta = 25°C	-2.0 to +2.0	mA
Storage temperature	T _{STG}	_	-55 to +150	°C

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Condition	Range	Unit
Logic power supply voltage	LVDD	VSS= 0 V	2.7 to 3.6, 4.5 to 5.5	V
LCD drive voltage	DVDD	VSS= 0 V	3.5 to 5.5	V
CLOCK frequency	fcp	_	0.01 to 2	MHz
Operating temperature	Ta	_	-40 to +105	°C

Recommended setting range for external parts (for oscillator circuit)

(LVDD = 4.5 to 5.5 V)

Parameter	Symbol	Condition	Min.	Max.	Unit
Oscillator resistor	Ro	_	20	82	kΩ
Oscillator capacitor	Co	_	0.01	0.047	μF
Frame frequency	f _{FRM}	_	14.6	451.0	Hz

The relationship between external oscillator resistor value, external oscillator capacitor value, and frame frequency is as follows:

 $fFRM = f_{OSC} \, / \, 24$

 $f_{OSC} = 1 \ / \ (device \ coefficient \times \ external \ oscillator \ resistor \ value \ R_O \times \ external \ oscillator \ capacitor \ value \ C_O) \\ Device \ coefficient = 0.6 \pm 23\%$

(Ľ١	/D	D	=	2.7	to	3.6	V))

Parameter	Symbol	Condition	Min.	Max.	Unit
Oscillator resistor	Ro	—	20	82	kΩ
Oscillator capacitor	Co	—	0.01	0.047	μF
Frame frequency	f _{FRM}	—	14.6	451.0	Hz

The relationship between external oscillator resistor value, external oscillator capacitor value, and frame frequency is as follows:

 $\mathrm{fFRM} = \mathrm{f}_{\mathrm{OSC}} / 24$

 $f_{OSC} = 1 / (device \ coefficient \times external \ oscillator \ resistor \ value \ R_O \times external \ oscillator \ capacitor \ value \ C_O)$ Device coefficient = 0.6±23%

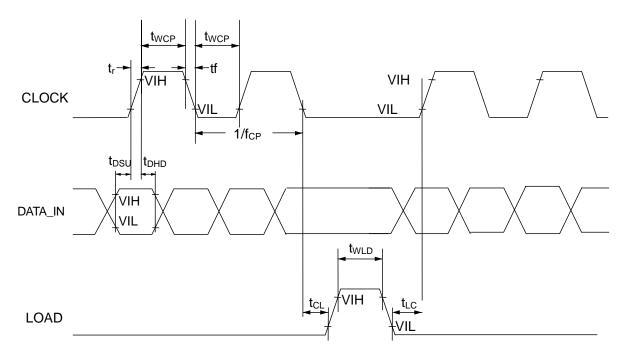
ELECTRICAL CHARACTERISTICS

DC Characteristics

		(LVDD = 2.7	to 3.6 V, 4.5 to 5.5	V, DVDD = 3.5 to	5.5, Ta =	-40 to +105°C)	
Parameter	Symbol	Condition	Min.	Max.	Unit	Applicable pin	
	V	LVDD = 4.5 to 5.5V	0.8LVDD			*1	
	VIH	LVDD = 2.7 to 3.6V	0.85LVDD			Ι	
"H" input voltage		LVDD = 4.5 to 5.5V		LVDD	V		
TT input voltage	V	CLKSEL = "H"	0.8LVDD	LVDD	v	050	
	VIHOSC	LVDD = 2.7 to 3.6V	0.85LVDD			OSC	
		CLKSEL = "H"	0.652700				
	VIL	LVDD = 4.5 to 5.5V		0.2LVDD		*1	
	VIL	LVDD = 2.7 to 3.6V		0.15LVDD		-	
"L" input voltage		LVDD = 4.5 to 5.5V	0	0.2LVDD	V		
L input voitage	V	CLKSEL = "H"	0	0.22000	v	OSC	
	VILOSC	LVDD = 2.7 to 3.6V		0.15LVDD		030	
		CLKSEL = "H"		0.152000			
	I _{IH1}	$V_I = LVDD$		1	μΑ	*2	
"H" input current	1	$V_I = LVDD$		1		OSC	
	I _{IHOSC}	CLKSEL = "H"		1	μA		
	I _{IL1}	$V_1 = 0V$	-1		μΑ	*2	
	I _{IL2}	LVDD = 5V	-0.009	-0.045	mA		
		$V_i = 0V$	-0.003	-0.0+3	шд	RESET	
"L" input current		LVDD = 3V	-0.004	-0.030	mA	HEOLI	
		$V_{I} = 0V$	0.004	0.000	117.		
		$V_i = 0V$	-1		μA	OSC	
	111030	CLKSEL = "H"	•		μι		
	V _{OS0}	DVDD = 4.5V	DVDD - 0.8		V		
	•030	$I_0 = -10\mu A$	0.0		•		
	V _{OS1}	DVDD = 4.5V	2/3DVDD - 0.8	2/30\/00 + 0.8	2/3DVDD - 0.8 2/3DVDD + 0.8 V	V	
Segment output	•031	$I_0 = \pm 10 \mu A$	2,00100 0.0	2,00100 1010		SEG1 to	
voltage	V _{OS2}	DVDD = 4.5V	1/3DVDD – 0.8	1/3DVDD + 0.8	V	SEG40	
	• 032	$I_0 = \pm 10 \mu A$					
	V _{OS3}	DVDD = 4.5V		0.8	V		
	.003	I _O = 10μA		0.0	-		
	V _{OC0}	DVDD = 4.5V	DVDD – 0.77		V		
	.000	$I_0 = -10\mu A$			-		
	V _{OC1}	DVDD = 4.5V	2/3DVDD -	2/3DVDD+0.77	V		
Common output	•001	$I_0 = \pm 10 \mu A$	0.77	2,001001011		COM1 to	
voltage	V _{OC2}	DVDD = 4.5V	1/3DVDD -	1/3DVDD+0.77	V	COM4	
	- 002	$I_0 = \pm 10 \mu A$	0.77		v		
	V _{OC3}	DVDD = 4.5V		0.77	V	V	
		I _O = 10μA		-			
Dynamic supply	I _{DVDD+} IL	*3		0.5	mA	LVDD,	
current	VDD					DVDD	

(LVDD = 2.7 to 3.6 V, 4.5 to 5.5 V, DVDD = 3.5 to 5.5, Ta = -40 to +105°C)

*1 CLOCK, LOAD, DATA_IN, RESET, 3/4SEL, and CLKSEL

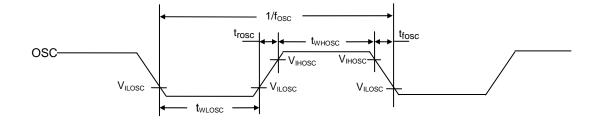

*2 CLOCK, LOAD, DATA_IN, 3/4SEL, and CLKSEL

*3 $C_0 = 0.022 \ \mu F$, $R_0 = 33 \ k\Omega$, no load

Switching Characteristics (Serial Interface)

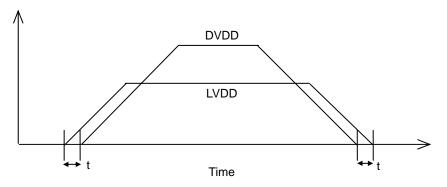
(LVDD = 2.7 to 3.6 V, 4.5 to 5.5 V, DVDD = 3.5 to 5.5 V, Ta = -40 to +105									
Parameter	Symbol	Condition	Min.	Max.	Unit				
Clock frequency	f _{CP}	—	0.01	2.0	MHz				
Clock pulse width	t _{WCP}	—	70	—	ns				
Rise time, Fall time *4	t _r , t _f	—		3	μs				
Data setup time	t _{DSU}	—	50	—	ns				
Data hold time	t _{DHD}	—	50	—	ns				
Load pulse width	t _{WLD}	—	100	—	ns				
Clock to load time	t _{CL}	_	100	_	ns				
Load to clock time	t _{LC}	_	100	—	ns				

*4 Applied to CLOCK pin

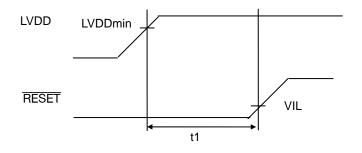

FEDL9475-01

ML9475

Switching Characteristics (External Clock Input to OSC)


(LVDD = 2.7 to 3.6 V, 4.5 to 5.5 V, DVDD = 3.5 to 5.5 V, Ta = -40 to +10								
Parameter	Symbol	Condition	Min.	Max.	Unit			
OSC input frequency	f _{osc}	CLKSEL = "H"	0.5	10	kHz			
OSC rise time, fall time *5	$t_{rosc,} t_{fOSC}$	t _{rosc,} t _{fOSC} CLKSEL = "H"		1	μs			
OSC "H" period	t _{WHOSC}	CLKSEL = "H"	4	—	μs			
OSC "L" period	twLosc	CLKSEL = "H"	4	_	μs			

*5 Applied to OSC pin


POWER-ON/OFF TIMING

Voltage

If LVDD is in the range of 0 V to LVDDmin, make sure that $LVDD \ge DVDD$ and $t \ge 0[ns]$ are satisfied. When performing power-on reset with a capacitor connected to the RESET pin, be careful about the relationship between the capacitance value and the rise time of the power supply.

INITIALIZATION TIMING

Drive the $\overline{\text{RESET}}$ pin Low and hold it Low under the condition "t1 \ge 0[ns]" until LVDD reaches LVDDmin.

The value of the current of the pull-up resistor is specified for $\overline{\text{RESET}}$ pin. The customer needs to select an external capacitor that meets the timing requirements shown above.

FUNCTIONAL DESCRIPTION

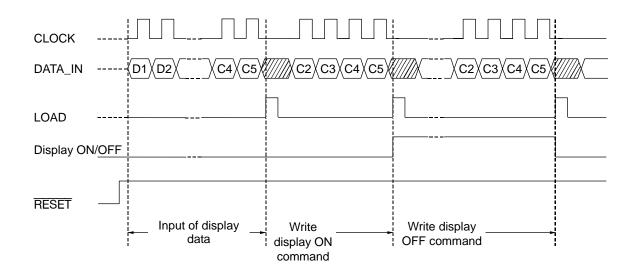
Description of Operation

• Display data input

As described in the section on "Data Structure," display data consists of a data field, which corresponds to the LCD segments ON and OFF, and a command field, which indicates the input of display data.

Set a value in each of bits C0 and C1 in the command field according to the common output that corresponds to the display data, and set a display data input command in the remaining four bits.

Data that has been input to the DATA_IN pin is loaded into the shift register on the rising edges of the CLOCK pulses, transferred to the display data latch during the "H" level period of the LOAD pulse, and then output via the segment driver.


сьоск	
DATA_IN D1 D2 D3 D4	
LOAD	
Display output	Old data ───►◄ New data

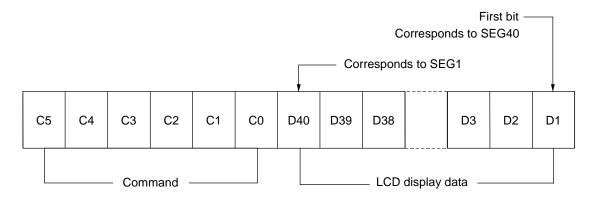
• Display ON, display OFF

Display goes off when power-on reset is executed; therefore, to turn display on, write the display ON command (F5).

The display OFF command (F4) is a command that makes all segments go off. By writing the display OFF command, the segments go off irrespective of display data.

The display ON command (F5) is a command that clears a display off state. By writing the display ON command, display goes back to the previous state.

List of Commands

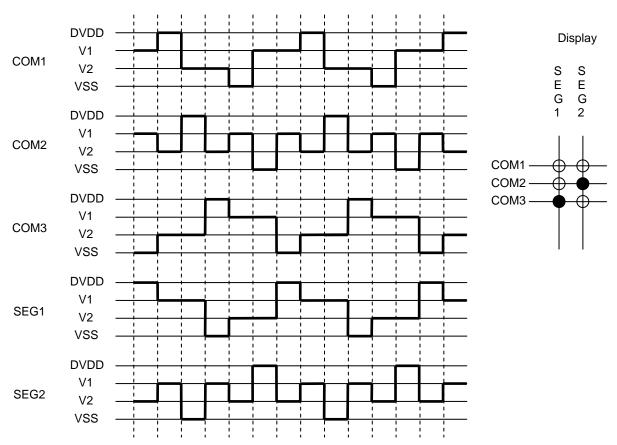

Command name	C5	C4	C3	C2	C1	C0	Description
F0	0	0	0	0	×	×	Disabled
F0'	0	0	0	1	×	×	Disabled
F1	0	0	1	0	0	0	Display data input (corresponds to COM1)
						1	Display data input (corresponds to COM2)
					1	0	Display data input (corresponds to COM3)
						1	Display data input (corresponds to COM4)
F2	0	1	0	×	×	×	Disabled
F3	0	1	1	0	0	0	Disabled
						1	Disabled
					1	0	Disabled
						1	Disabled
F3'	0	1	1	1	×	×	Disabled
F4	1	0	1	0	×	×	Display OFF
F5	1	0	1	1	×	×	Display ON
F6	1	1	0	×	×	×	Disabled
F7	1	0	0	×	×	×	Disabled
F8	1	1	1	×	×	×	Disabled

×: Don't care

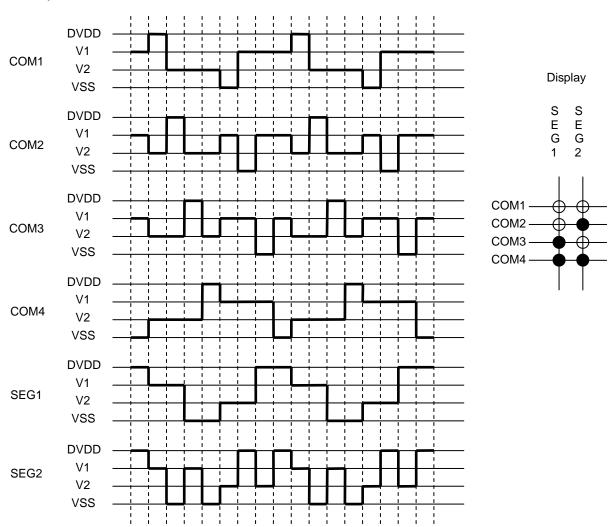
If a "Disabled" command is executed, no transfer is carried out from the shift register to the latch; however, data within the shift register will be rewritten. To transfer correct data to the latch, it is necessary to transfer data again using the F1 command.

Data Structure

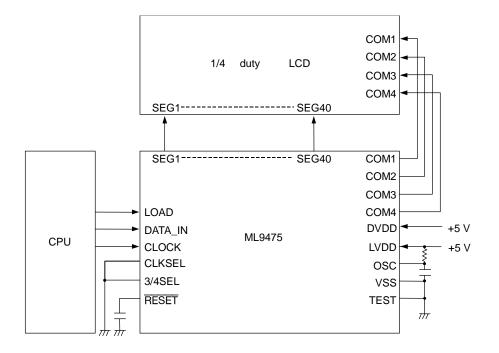
[Input data]

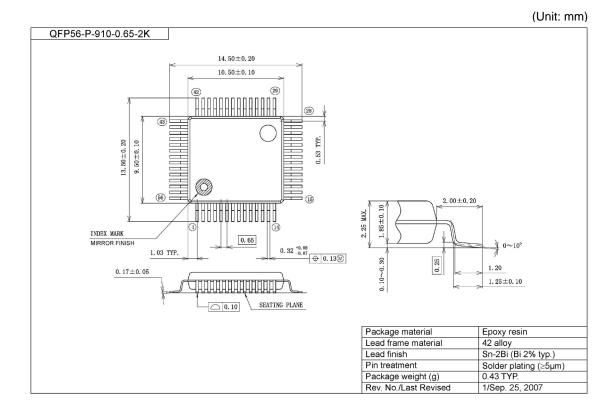


- Note 1: The setting of command F4 or F5 becomes enabled by inputting only the four bits of C2 to C5. (No need to input D1 to D40, C0, or C1.)
- Note 2: If any dummy bits are required because of the transfer bit count, add them before the first bit.


Note 3: Command execution depends on the value of bits C5 to C0 stored immediately before LOAD goes to a "H" level.

Common and Segment Output Waveforms


• 1/3 duty


• 1/4 duty

APPLICATION CIRCUIT

PACKAGE DIMENSIONS

Notes for Mounting the Surface Mount Type Package

The surface mount type packages are very susceptible to heat in reflow mounting and humidity absorbed in storage. Therefore, before you perform reflow mounting, contact OKI SEMICONDUCTOR's responsible sales person for the product name, package name, pin number, package code and desired mounting conditions (reflow method, temperature and times).

REVISION HISTORY

		Page			
Document No.	Date	Previous Edition	Current Edition	Description	
FEDL9475-01	Mar. 1, 2010	-	-	Final edition 1	

NOTICE

- 1. The information contained herein can change without notice owing to product and/or technical improvements. Before using the product, please make sure that the information being referred to is up-to-date.
- 2. The outline of action and examples for application circuits described herein have been chosen as an explanation for the standard action and performance of the product. When planning to use the product, please ensure that the external conditions are reflected in the actual circuit, assembly, and program designs.
- 3. When designing your product, please use our product below the specified maximum ratings and within the specified operating ranges including, but not limited to, operating voltage, power dissipation, and operating temperature.
- 4. OKI SEMICONDUCTOR CO., LTD. assumes no responsibility or liability whatsoever for any failure or unusual or unexpected operation resulting from misuse, neglect, improper installation, repair, alteration or accident, improper handling, or unusual physical or electrical stress including, but not limited to, exposure to parameters beyond the specified maximum ratings or operation outside the specified operating range.
- 5. Neither indemnity against nor license of a third party's industrial and intellectual property right, etc. is granted by us in connection with the use of the product and/or the information and drawings contained herein. No responsibility is assumed by us for any infringement of a third party's right which may result from the use thereof.
- 6. The products listed in this document are intended for use in general electronics equipment for commercial applications (e.g., office automation, communication equipment, measurement equipment, consumer electronics, etc.). These products are not, unless specifically authorized by OKI SEMICONDUCTOR CO., LTD., authorized for use in any system or application that requires special or enhanced quality and reliability characteristics nor in any system or application where the failure of such system or application may result in the loss or damage of property, or death or injury to humans.

Such applications include, but are not limited to, traffic and automotive equipment, safety devices, aerospace equipment, nuclear power control, medical equipment, and life-support systems.

- 7. Certain products in this document may need government approval before they can be exported to particular countries. The purchaser assumes the responsibility of determining the legality of export of these products and will take appropriate and necessary steps at their own expense for these.
- 8. No part of the contents contained herein may be reprinted or reproduced without our prior permission.

Copyright 2010 OKI SEMICONDUCTOR CO., LTD.